IONIZING RADIATION TRANSDUCERS

EE312, Prof. Greg Kovacs

Stanford University

RADIATION TRANSDUCERS

- Ionization-based detectors (Geiger-Muller)
- Scintillation detectors
- Direct solid-state detectors

TYPES OF IONIZING RADIATION

Type of Radiation	RBE		
$^{-}$, $^{+}$, x, $(E < 0.03 \text{ MeV})$	1		
-, $+$, x, $(E > 0.03 MeV)$	1.7		
Slow (Thermal) Neutrons	3		
Fast Neutrons, Protons	10 to 20		
-Particles	10 to 20		
Recoil Ions (heavy ions)	up to 30		

RBE = relative biological effectiveness

COMPARISON OF DETECTORS

Sensor Type	Energy Required to Form e/h or e/ion Pair	Response Time					
Geiger-Müller (gas-filled tube)	25 to 40 eV	0.1 to 1.0 ms					
Scintillator (example NaI(Tl))	50 eV for pair, 1 keV for photoelectron at cathode of photomultiplier	0.01 to 1.0 μs					
Semiconductor	1.12 eV (Si), 0.66 eV (Ge)	1 ns					

G-M TUBE DESIGNS

- Particles ionize gas, ions and electrons are attracted to cathode and anode, respectively, generating a current.
- No micromachined versions at present.

Reference: Norton, H. N., "Handbook of Transducers," Prentice-Hall, Inc., 1989.

RADIATION TO LIGHT TRANSDUCTION

- Scintillators convert incident ionizing radiation into light using an intermediate phosphor (e.g. doped ZnS).
- The light is detected using a conventional detector such as a CCD, photomultiplier, avalanche diode, etc.
- The Cerenkov Effect (radiation has higher velocity than light in a particular material, giving rise to light emission) can be used instead of phosphors.

SCINTILLATOR MATERIALS

Material	Peak Emission	Cutoff Emission	Time Constant	Refractive Index	Density	Scintillation Efficiency
* NaI(Tl)	410 nm	320 nm	230 ns	1.85	3.67	100%
CaF ₂ (Eu)	435 nm	405 nm	940 ns	1.44	3.18	50%
* CsI(Na)	420 nm	300 nm	630 ns	1.84	4.51	85%
CsI(Tl)	565 nm	330 nm	1.0 µs	1.80	4.51	45%
* LiI(Eu)	470 to 485 nm	450 nm	1.4 µs	1.96	4.08	35%
* CsF	390 nm	220 nm	5 ns	1.48	4.11	5%
Bi ₄ Ge ₃ O ₁₂	480nm	350 nm	300 ns	2.15	7.13	8%
* KI(Tl)	426 nm	325 nm	1 μs	1.71	3.13	24%

Reference: Padikal, T. N., "Medical Physics," Section 14 in "A Physicist's Desk Reference: The Second Edition of Physics Vade Mecum," Anderson, H. L. [ed.], American Institute of Physics, New York, NY, 1989, pp. 226 - 237.

DIRECT SEMICONDUCTOR DETECTORS

- Electron-hole pair generation occurs at an average of 3 eV versus 30 eV for ionization detectors, giving higher sensitivity and SNR.
- Typical structures are PIN diodes, reverse biased to widen depletion region and collect carriers.
- Often, it is desired to track the paths of particles, so arrays of detectors are used.
- Fully integrated arrays with on-chip amplifiers, multiplexer and read-out circuitry have been implemented.

DIRECT SEMICONDUCTOR DETECTORS

Reference: Norton, H. N., "Handbook of Transducers," Prentice-Hall, Inc., 1989.

INTEGRATED CMOS DETECTOR

Reference: Snoeys, W., Plummer, J., Parker, S., and Kenny, C., "A New Device Structure and Process Flow for a Low-Leakage P-I-N Diode-Based Integrated Detector Array," summary of conference paper, in IEEE Transactions on Electron Devices, vol. 38, no. 12, Dec. 1991, pp. 2696 - 2697.

Courtesy Dr. W. Snoeys.

POTENTIAL MICROMACHINING APPLICATIONS FOR IONIZING RADIATION

- Heavy metal collimators (e.g. electroplated lead or gold).
- Integrated ionization sensor arrays with on-chip highvoltage source.
- Stacked 3-D detector arrays.
- Actuated heavy metal containing micro-shutters with radiation sources for calibration of detector arrays.
- Others?